Name; _____

Date: _____

Lesson 6.7 Fraction of a Set

What fraction of each set of objects is shaded? Express your answer in simplest form.

1.

2.

3.

.

133

Use a model to help you answer each question.

Example ———

What is $\frac{3}{4}$ of 24?

$$1 \text{ unit} = 6$$

3 units =
$$6 \times 3 = 18$$

So,
$$\frac{3}{4}$$
 of $24 = 18$.

5. What is $\frac{4}{5}$ of 30?

So,
$$\frac{4}{5}$$
 of $30 -$ ______.

6. What is $\frac{5}{6}$ of 48?

7. What is $\frac{5}{12}$ of 60?

Solve.

8.
$$\frac{2}{3} \times 45 =$$

10.
$$\frac{2}{7} \times 35 =$$

12.
$$\frac{5}{6} \times 60 =$$

14.
$$\frac{7}{9} \times 45 =$$

9.
$$\frac{4}{9} \times 36 =$$

11.
$$\frac{3}{8} \times 32 =$$

13.
$$\frac{3}{4} \times 36 =$$

15.
$$\frac{3}{5} \times 40 =$$

Real-World Problems: Fractions Lesson 6.8

Solve. Show your work.

Arthur had \$90. He spent \$40 and gave \$20 to his brother. What fraction of 1. Arthur's money is left?

A baker has 20 pounds of sugar. He uses $\frac{3}{4}$ of the sugar to bake muffins. 2. How much sugar does he have left?

- Mya buys 6 goldfish and 4 angelfish.
 - What fraction of the fish are goldfish?

b. Mya buys 2 more goldfish. What fraction of the fish are angelfish?

4. Cheryl spends $\frac{3}{10}$ of her savings on a book, and $\frac{2}{5}$ on a pen. What fraction of her savings does Cheryl spend?

5. Of the vehicles on the road, $\frac{1}{2}$ are cars and $\frac{1}{8}$ are motorcycles. What fraction of the vehicles are not cars or motorcycles?

6. Allie's plant has a height of 6 meters. Rajon's plant grows 3/10 meter higher. How high does Rajon's plant grow?

137

7. There are 10 packets of ham. Of the packets, $\frac{2}{5}$ are turkey ham. Each packet of turkey ham weighs $\frac{1}{3}$ pound. What is the total weight of the turkey ham?

8. Carla spends ⁶/₄ hours exercising every day for 12 days. She spends ¹/₂ of her exercise time every day lifting weights. How much time does Carla spend lifting weights during the 12 days?

Name: _____

Date: _____

Lesson 6.9 Line Plots with Fractional Units

1. This line has 8 equal intervals from 0 to 1. Fill in the missing fractional units

Fill in the blanks using the above line plot.

6.
$$\frac{1}{2} + \frac{5}{8} =$$

7.
$$\frac{1}{4} + \frac{7}{8} =$$

8.
$$\frac{7}{8} - \frac{3}{4} =$$

9.
$$\frac{3}{4} - \frac{3}{8} =$$

10. This line has 10 equal intervals from 0 to 1. Fill in the missing fractional units.

Fill in the blanks using the above line plot.

- 13. > _____
- 14. _____ >
- 15. $\frac{3}{10} + \frac{4}{5} =$
- **16.** $\frac{7}{10} + \frac{1}{2} =$
- 17. $\frac{9}{10} \frac{1}{2} =$
- 18. $\frac{4}{5} \frac{7}{10} =$
- 19. This line has 12 equal intervals from 0 to 1. Fill in the missing fractional units.

Fill in the blanks using the above line plot.

24.
$$\frac{5}{12} + \frac{5}{6} =$$

25.
$$\frac{7}{12} + \frac{1}{4} =$$

26.
$$\frac{2}{3} - \frac{7}{12} =$$

27.
$$\frac{11}{12}$$
 $\frac{1}{2}$ =

Recall Prior Knowledge

Defining a point, line, and a line segment

Definition	Example	You Say and Write
A TO E WILLIAM COMMENT	2000 (A.)	
- 10 (14.00 m
94.720.5	Poly Control of Contro	
+300 JE 4	15	

Defining angles

An angle is formed by two line segments with a common endpoint.

<u>/</u>.

An angle can also be formed when two sides of a figure meet.

side_____

Fold a piece of paper like this to get a right-angled corner.

Comparing angles with a right angle -

Compare an angle with a right angle.

Angle \boldsymbol{E} is the same as a right angle.

Angle F is less than a right angle.

Use the folded paper to check if the angles are less than or greater than a right angle.

complete with point, line, or line segment.

- A is an exact location in space.
- A is a part of a line with two endpoints.
- A is a straight path continuing without end in two opposite directions.

ecide whether each figure forms an angle. Explain your answer.

0

cane the angle.

Angle

Copy the shapes. Mark an angle in each shape.

Rectangle

B Pentagon

Decide whether the line segments in each angle form a right angle. Use a piece of folded paper to help you. Explain your answer.

Look at the angles. Then answer the questions. Use a piece of folded paper to help you.

- Which angles are right angles?
- Which angles measure less than a right angle?
- Which angles measure greater than a right angle?

9.1

Understanding and Measuring Angles

esson Objectives

Estimate and measure angles with a protractor. Estimate whether the measure of an angle is less than or greater than a right angle (90°).

inner scale outer scale ocute angle obtuse angle

Use letters to name rays and angles.

A ray is part of a line that continues without end in one direction. It has one endpoint. You can use two letters to name a ray. The first letter is always the endpoint.

You can write ray \overrightarrow{AB} as \overrightarrow{AB} , and ray \overrightarrow{BA} as \overrightarrow{BA} .

In the same way, you can write:

- In a CD or DC as \overrightarrow{CD} or \overrightarrow{DC} .
- b line segment \overline{EF} or \overline{FE} as \overline{EF} or \overline{FE} .

 \overrightarrow{PA} and \overrightarrow{PB} are rays meeting at point P.

The point P is called the **vertex**. Name the angle at vertex $P \angle APB$ or $\angle BPA$. If you label the angle at vertex P as x, you can also name it $\angle x$. In naming angles using three letters, the vertex is always the middle letter.

Guided Practice

Name the angles.

An angle is also formed by two sides of a shape meeting at a point.

- Angle at P: ∠
- 3 Angle at R: ∠

- Angle at Q: ∠
- Angle at S: ∠

Name the angles.

_

Ø

Name the angles labeled at the vertices A, B, C, and D in another way.

- **(()** ∠y.∠

- **②** ∠z:∠

$\mathcal{L}^{\mathrm{orn}}$ Use a protractor to measure an angle in degrees.

An angle measure is a fraction of a full turn. An angle is measured in degrees. For example, a right angle has a measure of 90 degrees. You can write this as 90°.

You can use a protractor to measure an angle.

- **Step 1** Place the base line of the protractor on \overrightarrow{AB} .
- **Step 2** Place the center of the base line of the protractor at the vertex of the angle.
- **Step 3** Read the **outer scale**. \overrightarrow{AC} posses through the 45° mark. So, the measure of the angle is 45°.

Since AB passes through the zero mark of the outer scale, read the measure on the outer scale.

Measure ∠DEF.

The measure of ∠DEF is less than that of a right angle. It is 70 degrees.

Measure of $\angle DEF =$

Since \overrightarrow{EF} passes through the zero mark of the **inner scale**, read the measure on the inner scale.

Euided Practice

omplete.

The measure of $\angle ABC$ is of a turn.

Ø

The measure of $\angle PQR$ is of a turn.

Measure ∠GHK.

Is the measure of ∠GHK less than or greater than 90°?

The measure of ∠GHK is degrees.

Measure of $\angle GHK =$

Explain when to use the inner scale of the protractor.

Is the measure of \(\angle JKL\) less than or greater than 90°?

The measure of $\angle JKL$ is degrees.

Measure of $\angle JKL =$

Did you read the inner or outer scale? Explain your answer.

Find the measure of each angle.

Œ

Measure of $\angle e =$

Measure of $\angle f =$

ocute angle

So, $\angle e$ is an angle, and $\angle f$ is an angle.

The steps for measuring these angles are not in order.

Arrange the steps in order by using 1, 2, or 3 in each box.

Obtuse angle	S		
	01	St	

Step

Place the center of the base line of the protractor at vertex B of the angle.

Place the base line of the protractor on ray BA.

Read the outer scale at the point where ray *BC* crosses it. The reading is 116°. So, the angle measure is 116°.

Read the inner scale at the point where ray *NM* crosses it. The reading is 50°.

So, the angle measure is 50°.

Place the base line of the protractor on ray NO.

Place the center of the base line of the protractor at vertex N of the angle.

Compare the measures of the two angles in Exercises 1 and 2.
Use < and > in your answers.

et's Practice

lame and measure the angles.

- Name two angles that are right angles.
- Name four angles that are ocute angles.

 What are the measures of these angles?
- Name four angles that are obtuse angles.
 What are the measures of these angles?

se a protractor to find the measure of each angle.

e a protractor to measure each marked angle.

ON YOUR OWN

Go to Workbook 8:
Practice 1, pages 45-50

Estimate the measure of each angle by comparing it to a right angle (90°). Then measure each one with a protractor.

Decide if each angle is an acute angle, an obtuse angle, or a right angle.

Record your answers in a table like this.

Angle	Estimated Measure	Actual Measure	Type of Angle
∠ABC	80°	\$0.	Right Angle